Quantum dot-based assay for Cu(2+) quantification in bacterial cell culture.

نویسندگان

  • V Durán-Toro
  • A Gran-Scheuch
  • N Órdenes-Aenishanslins
  • J P Monrás
  • L A Saona
  • F A Venegas
  • T G Chasteen
  • D Bravo
  • J M Pérez-Donoso
چکیده

A simple and sensitive method for quantification of nanomolar copper with a detection limit of 1.2×10(-10)M and a linear range from 10(-9) to 10(-8)M is reported. For the most useful analytical concentration of quantum dots, 1160μg/ml, a 1/Ksv value of 11μM Cu(2+) was determined. The method is based on the interaction of Cu(2+) with glutathione-capped CdTe quantum dots (CdTe-GSH QDs) synthesized by a simple and economic biomimetic method. Green CdTe-GSH QDs displayed the best performance in copper quantification when QDs of different sizes/colors were tested. Cu(2+) quantification is highly selective given that no significant interference of QDs with 19 ions was observed. No significant effects on Cu(2+) quantification were determined when different reaction matrices such as distilled water, tap water, and different bacterial growth media were tested. The method was used to determine copper uptake kinetics on Escherichia coli cultures. QD-based quantification of copper on bacterial supernatants was compared with atomic absorption spectroscopy as a means of confirming the accuracy of the reported method. The mechanism of Cu(2+)-mediated QD fluorescence quenching was associated with nanoparticle decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

Quantification Analysis of Dot Blot Assays for Human Immunodeficiency Virus Type 1 and 2 Antibodies

Objective Dot Blot (DB) assay provides highly specific results, but usually not reliable for quantification of antibody production. The need for a more objective DB assay to provide a better definition of the immune status, against HIV antigens, promoted this study to be done to develop a quantitative DB assay. Material and Methods Dot blot (DB) strips for antibodies directed to human immuno...

متن کامل

Novel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology

Quantum-dot cellular automaton (QCA) is a novel nanotechnology with a very different computational method in compared with CMOS, whereas placement of electrons in cells indicates digital information. This nanotechnology with specifications such as fast speed, high parallel processing, small area, low power consumption and higher switching frequency becomes a promising candidate for CMOS tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical biochemistry

دوره 450  شماره 

صفحات  -

تاریخ انتشار 2014